ZLAN5407M 导轨型 串口服务器 /Modbus 网关

RS485 转 TCP MQTT JSON ModbusTCP

版权©2008 上海卓岚信息科技有限公司保留所有权力 ZL DUI 20221116.1.0 版权©2008 上海卓岚信息科技有限公司保留所有权力

版本信息

对该文档有如下的修改:

修改记录

日期	版本号	文档编号	修改内容
2022-11-16	Rev.1	ZL DUI 20221116.1.0	发布版本

所有权信息

未经版权所有者同意,不得将本文档的全部或者部分以纸面或者电子文档的形式重新 发布。

本文档只用于辅助读者使用产品,上海卓岚公司不对使用该文档中的信息而引起的损 失或者错误负责。本文档描述的产品和文本正在不断地开发和完善中。上海卓岚信息科技 有限公司有权利在未通知用户的情况下修改本文档。

目	录

1.	概述.		5
2.	功能特	寺点	7
	2.1	硬件特点	7
	2.2	软件功能	7
	2.3	高级软件功能	8
3.	技术参	参数	9
4.	使用证	兑明	10
	4.1	硬件说明	10
	4.2	硬件连接	13
	4.3	软件安装	13
	4.4	参数配置	13
	4.5	TCP 通讯测试	19
	4.6	虚拟串口测试	21
	4.7	Modbus TCP 测试	24
	4.8	Web 方式配置	25
5.	工作植	莫式和转化协议	27
	5.1.	虚拟串口模式	29
	5.2.	直接 TCP/IP 通讯模式	29
	5.3.	设备对联方式	33
6.	设备训	周试	34
	6.1.	网络物理连接	34
	6.2.	网络 TCP 连接	34
	6.3.	数据发送和接收	35
	6.4.	ZLVircom 远程监视数据	36
7.	Modb	BUS 高级功能	37
	7.1.	启用 Modbus 网关	37
	7.2.	存储型 Modbus 网关	38
	7.3.	禁用存储型功能	39

	7.4.	多主机功能
	7.5.	多主机参数41
	7.6.	多目的 IP 下的 Modbus42
	7.7.	可配置 Modbus 网关42
8.	注册包	1和心跳包42
	8.1.	注册包43
	8.2.	心跳包45
9.	HTTPD	客户端通信功能46
10.	MQTT	7 网关
11.	JSON	转 Modbus RTU47
12.	NTP 🕸	计间功能47
13.	网口修	6改参数47
14.	设备管	育理函数库48
15.	串口修	⁸ 改参数48
16.	远程设	と备管理49
17.	固件升	H级方法51
18.	订购信	言息
19.	售后服	3 4 8 9 7 4

1. 概述

ZLAN5407M 是一款专门为工业环境设计的 RS485 设备数据采集器/物联网 网关,兼具串口服务器、Modbus 网关、MQTT 网关、RS485 转 JSON 等多种功 能于一体。

它具有4个RS485接口和一个以太网接口。它采用导轨型安装方式,安装方便。和传统桌面式4串口服务器相比,宽度减少为原来的1/4左右,体积小巧。 采用接线端子式电源接入,9~24V宽电压输入。

ZLAN5407M采用了高温阻燃合金塑料外壳,和普通塑料外壳相比具有耐高 温特性,实测110℃环境下不变形;具有阻燃特性,实测离开火源立即熄灭,不会助燃, 可以满足工业现场防火要求。

图 1 ZLAN5407M

ZLAN5407M 具有工业级高低温工作温度范围,通过静电、群脉冲、浪涌等 EMC 测试。工作稳定可靠。

当作为普通串口服务器使用时,将 5407M 的网口连接到以太网中,上位机 软件可以采用 TCP/UDP 透传方式或者虚拟串口方式将数据发送到 5407M 的 RS485 接口上; RS485 接口上收到的数据也会传输到 TCP 端的软件上。虚拟串 口方式下,连接虚拟串口的串口软件无需修改,只需要打开 ZLVircom 虚拟的串

口即可使用。

当作为 Modbus 网关使用时,5407M 支持 Modbus TCP 转 Modbus RTU,从 而实现上位机使用 Modbus TCP 协议对 RS485 的 Modbus RTU 设备的数据采集。 相反的如果 RS485 端作为主站也可以使用。5407M 支持较为高级的 Modbus 网 关功能,包括可配置 Modus 网关 ZLMB、存储型 Modbus 网关等,完全满足 Modbus 网关的各类配置和用法。其支持的多主机功能可以让多个计算机主站同时访问 一个 RS485 从设备。

当作为 MQTT 网关使用时,设备可以以透传方式将串口数据采用 MQTT 协议上传 MQTT 服务器,支持的服务器包括百度云 MQTT、阿里云 MQTT、中国移动 OneNet 平台等。支持将采集的 Modbus RTU 或非标串口数据解析为 JSON 格式封装在 MQTT 数据包中上传。

支持JSON格式上传采集的数据,数据自动采集。采集数据支持Modbus RTU, 645 仪表 97 版本、645 仪表 07 版本、各类非标 RS485 协议、Modbus TCP 等。 可以用户自主用 ZLVircom 配置上传的数据格式和 JSON 关键词。上传时可以支 持 MQTT 协议、HTTP POST 协议、HTTP GET 协议、透明传输协议、各类非标 网络协议。ZLAN5407M 具有复位按钮,方便在 JSON 格式错误的时候复位参数。

支持边缘计算功能,包括:数据超限报警、数据平移缩放、数据变化上传、 设备离线报警、设备自主采集、设备自动连接等功能。此功能一般和 JSON 功能 配合使用。

另外 ZLAN5407MN 型号支持 P2P 方式联网,无需通过服务器中转,通过 ID 来连接设备。

ZLAN5407M 具备强大的物联网网关各类功能,非常适合于工业领域对各类 RS485 仪表、传感器进行采集,包括本地网络的采集或者上传云端服务器的自主 采集自主上发。

ZLAN5407M 可应用于:

- 作为物联网网关作为设备和云端的通讯桥梁;
- 电力、智能仪表和能耗监控;
- 各类自动化 PLC 的远程监控和程序下载;
- 各类组态软件和设备通讯接口;
- 门禁安防领域设备联网;

典型应用连接如图 2所示。原有的串口设备 RS485 和 ZLAN5407M 的 RS485

口连接,5407M 通过网线连接到计算机。计算机上的软件通过 TCP/IP 方式、虚 拟串口方式或者云服务器和 5407M 建立连接。此后,串口设备发送的任何数据 将透明地传送计算机的软件上,而软件通过网络发送给 ZLAN5407M 的数据也 透明的传送给串口设备。

图 2 连接示意图

2. 功能特点

2.1 硬件特点

ZLAN5407M 有如下的特色:

- 1. 导轨型设计:适合工业领域机柜内部安装。
- 2. 体积小巧: 相对于普通的串口服务器, 宽度较小, 不占空间。
- 3. 具有复位按钮: 方便复位参数,在 JSON 格式错误时的恢复。
- 端子式供电,9~24V 宽电压输入,具备反接反电源保护。内置自恢复保险 丝和压敏保护,抗击浪涌。
- 5. 端子式 RS485 接口, 支持 32 台从设备, 波特率支持 300~921.6kbps。
- 6. 丰富的面板指示灯方便调试:在连接方面,有指示 TCP 连接建立的 LINK 灯; 数据指示灯方面有数据活动指示灯。

2.2 软件功能

1 支持 TCP 服务端、TCP 客户端, UDP 模式, UDP 组播。作为 TCP 客户端

的时候同时支持 TCP 服务器端功能。作为 TCP 服务器支持 30 个 TCP 连接, 作为 TCP 客户端支持 7 个目的 IP。

- 2 波特率支持 300~921.6bps,支持自定义波特率。数据位支持 5~9 位,校验 位可以为无校验、奇校验、偶校验、标记、空格这五种方式。
- 3 支持设备连接上发送 MAC 地址功能,方便云端管理设备。
- 4 提供计算机端搜索、配置设备的二次开发包 DLL 开发库。
- 5 支持 Web 浏览器配置、支持 DHCP 动态获得 IP、DNS 协议连接域名服务器 地址。
- 6 支持云端远程搜索设备、配置设备参数、设备程序升级。
- 7 支持远程通过软件查看设备的 TCP 连接状态、串口数据发送、接收状态。 虚拟串口支持数据监视功能。

2.3 高级软件功能

5407M 支持的高级软件功能有:

- 支持 Modbus 网关功能,支持 Modbus RTU 转 Modbus TCP。可以支持存储 型的 Modbus,可以自动采集设备数据,并存储起来;也支持非存储模式的 Modbus 网关;支持 ZLMB 可配置表 Modbus 网关功能。
- 2 支持多主机功能:在一问一答的查询方式下,支持网口端允许有多台计算机 同时访问同一个串口设备。也可以实现一个串口转多个串口的多主机应用。
- 3 支持 MQTT 网关功能。
- 4 支持 JSON 转 Modbus RTU、Modbus TCP 和 645 仪表协议,支持 HTTP POST、
 HTTP GET 格式上传数据。
- 5 支持 NTP 协议获得网络时间,用于串口输出后者用于协议内容上发。
- 6 支持自定义心跳包和注册包功能:可以方便和云端进行通信和设备识别。
- 7 支持 TCP 建立连接需要密码验证的功能,保证连接安全性。
- 8 支持 http 方式的数据提交和下发功能,云端可以直接使用 http 的 GET 指令 和设备的串口数据进行交互。

3. 技术参数

	1X I	以不少奴	
外形			
串口接口:	RS485: 3.5mm 接约	钱端子	
串口数量:	4个,可独立工作,	单独配置	
电源接口:	3.5mm 接线端子		
复位:	按钮式一键复位出	一设置	
外壳材料:	合金阻燃塑料		
尺寸:	L x W x H: 37.6 x 8	33.6 x 89.2	lmm
安装方式:	35mm 导轨式安装		
通信界面			
以太网:	RJ45 接口,10M/10)0M,支持	寺自动交叉线检测(MDI/MDIX)
串口:	RS485×4: 485A	485B、G	ND
串口参数			
波特率:	300~921.6Kbps,	验位:	无, 奇校验, 偶校验, 标记, 空格
	可自定义波特率		
数据位:	5~9位	流控 :	无流控、软流控
软件			
工作模式:	TCP 服务器、TCP	客户端(司时 TCP 服务端也共存)、UDP、
	UDP 组播、UDP 动	J态模式	
转化协议:	Modbus TCP、MQ7	T, JSON	I、RealCom 协议、HTTP
Modbus 网关:	支持多主机模式、	存储型模式	式、预先配置表(ZLMB)模式
JSON 网关:	设备端支持 Modbus	s RTU、 M	Iodbus TCP、DLT-645;
	服务器支持 HTTP I	POST/GET	「、MQTT、透传、自定义协议;
	平移缩放、离线报	警、超限打	报警、变化上传、数据格式转化;
IP 和地址解析:	静态或者 DHCP、	支持 DNS	解析
通讯方式:	TCP/IP 直接通讯、	虚拟串口	方式
连接数量:	TCP 服务器: 30 个	; TCP 客	户端:7个目的 IP
配置方式:	ZLVirCOM 工具、	WEB 浏览	[器(可自定义网页)、设备管理
	 函数库、串口 AT 指	令配置、	设备云管理(卓岚云)

表 1 技术参数

其它软件功能:	自定义注册包心跳包、连接上发送 ID、NTP、内置 TCP 心跳
硬件	
输入电压:	9~24V DC
输入电流:	30mA@12V DC
EMC 电磁兼容:	静电(GB/T17626.6-2018):接触8KV、非接触15KV;
	快速群脉冲(GB/T17626.4-2018):电源±4KV,信号±2KV;
	浪涌(GB/T17626.5-2008): 电源±4KV,信号±2KV。
环境要求	
操作温度、湿度:	-40~85°C 5~95% RH
储存温度、湿度:	-45~100℃ 5~95% RH

ZLAN5407M 串口服务器的主视图如上图所示,采用 35mm 标准导轨外壳。 1 电源输入:接线端子: 3.5mm 端子。输入电压 9~24V。

图 4 电源、网口、串口 3、串口 4

- 2 RS485:使用 RS485 接 485B 和 485A 即可,其中 485B 表示 485 负线,485A 表示 485 正线;485 可带负载 32 台。最长通信距离 1200 米。一般 RS485 线 超过 300 米的时候才有必要使用终端电阻,485 终端电阻为 120 欧姆。
- 3 网口: 连接网线, 支持自动交叉。
- 4 **指示灯**:分为 Power、NET、Link、Active(ACT)灯,分别表示电源、网线连接灯、连接指示、数据指示。
- 5 复位:将上图按钮按下 5 秒以上,模块将会复位为 192.168.1.254 的 IP。如 果需要禁用 JSON 等配置,可以在按下按钮的时候重新启动,则各类下载的 配置文件不会加载。

Power 灯	电源指示灯
NET 灯	网线连接好,指示灯显示橙色
Link 灯	当 TCP 连接建立后(或处于 UDP 模式), Link 为绿色。可用于判断串口

表 2 指示灯含义

	服务器是否和上位机软件建立通讯链路。
Active 灯	当网口向串口发送数据时或者当串口向网口发送数据时,指示灯为蓝色。

使用指示灯调试通讯方法:

- 1) 如果 NET 灯不为橙色,则网线没有连接好,请检测网线。
- 2) 如果 Link 灯不是绿色(只考虑 TCP 工作模式),则上位机软件没有和串口服务器建立连接,请考虑 IP 地址是否配置在同一个网段。
- 3) 如果 Active 灯不为蓝色,则数据没有通讯。
- 6 **安装方法:** 设备外壳带有 35mm 标准导轨,有导轨的场合,可直接将设备装 至导轨中。

图 5 设备背部

图 5 尺寸图

4.2 硬件连接

一般来说串口服务器只需要连接电源、串口、网线。

其中电源可以采用现场的2线的的电源,可以直接连接电源正负端子。

其中串口需要根据用户串口设备来连接。将485 正接到485A,485 负接到485B 即可。

网口连接普通网线,可以和计算机直连也可以经过交换机接到网络中。

4.3 软件安装

ZLVircom可用于设备 IP 等参数的配置,以及创建虚拟串口。如果无需虚拟 串 口 功 能 ,则 可 以 下 载 免 安 装 版 本 。 下 载 地 址 : http://www.zlmcu.com/download.htm

• • -	/// •
软件名称	说明
ZLVircom 设备管理工具(非安装版)	非安装版不含虚拟串口功能。
ZLVircom-设备管理工具(安装版)	安装版,内部含有ZLVircom_x64.msi和
	ZLVircom_x86.msi。64 位操作系统安装 x64,
	32 位操作系统安装 x86 版本。

表 3 ZLVircom 版本

安装时按照默认提示安装即可。安装完毕后会在每次计算机启动时启动 zlvircom,用于开机创建虚拟串口。

4.4 参数配置

ZLVircom 安装完毕后,设备硬件连接也完毕后,运行 ZLvircom 软件如图 所示,然后点击"设备管理"如图 所示。使用 ZLVircom 可以在不同的网段内搜 索和配置设备参数,非常方便,只要设备和运行 ZLVircom 的计算机在同一个交 换机下就可以。

Z	虚拟串口&设备	音理器 -	VirCom		g transmitted	present diverses	Region Science and	
	里(<u>M</u>) 配置(<u>C</u>) 宣君(⊻) 帮助(日)		•			
	\bigcirc	2		NA -	<i>(</i>)			
j,	动服务 停1	上服务	设备管理	串口管理	关于			
序	状态			虚拟串		设备名称	设备来路IP	设备ID
	目息 							
	2014-05-18 2014-05-18	8,11:44 8,11:44	1:53] 在端 1:53] 在端	105196篇 104196监	听成功。 听成功。			<u>^</u>
Ш								
								-

图 6 ZLVircom 主界面

设备管	理			_											×
序	类型	设备名称	型号	Ρ	设备IP	本地	目的IP 🛆	模式	TCP	虚拟串	虚拟串口	设备ID	TXD	RXD	
1	内网	ZLDEV0001	2007	1	192.168.1.200	4196	192.168.1.3	TCP Server	未建立	未设置	未联通	FADE547A	0	0	
2	内网	ZLDEV0002	2007	2	192.168.1.201	4196	192.168.1.3	TCP Server	未建立	未设置	未联通	FAD47B34	0	0	自动搜索
3	内网	ZLDEV0003	2007	3	192.168.1.202	4196	192.168.1.3	TCP Server	未建立	未设置	未联通	FAD27B2E	0	0	
4	内网	ZLDEV0004	2007	4	192.168.1.203	4196	192.168.1.3	TCP Server	未建立	未设置	未联通	FACC7B3C	0	0	手动添加

图 7 设备列表

从设备列表中看到当前所有在线的设备。点击"编辑设备"进行参数的配置。 注意: 红色 P 列表中的 1~4 表示 4 路串口,这个 port 标识是不可以修改的, IP 和设备名称可以修改。

设备信息	□□网络设置———		高级选项	
虚拟串口 不使用 🚽	IP模式	静态 💌	DNS服务器IP 8 . 8 . 4	. 4
设备型号 ZLSN2043	IP地址	192 . 168 . 1 . 200	目的模式动态	-
设备名称 ZLDEV0001	端口	4196	转化协议 无	•
设备ID 6A0A4	工作模式	TCP 服务器 ▼	保活定时时间 60	(秒)
固件版本 V1.557	子网掩码	255 . 255 . 255 . 0	断线重连时间 12	(秒)
该设备支持功能	网关	192 . 168 . 1 . 1	网页访问端口 80	
□ 网页下载	目的IP或域名	192.168.1.3 本地IP	所在组播地址 230 . 90 . 76	. 1
▼ 域名系统	目的端口	4196	□ 启用注册包:	L ASCI
☑ REAL_CON协议			□ 启用无数据重启 每隔 300	- (秋)
☑ Modbus TCP转RTU	波特率	115200 -	□ 启用定时发送参数每隔 5	(分钟)
▶ 串口修改参数	数据位	8	更多高级选项	
┏ 自动获取IP	校验位	无	┌ 分包规则	
□ 存储扩展EX功能	停止位	1	数据包长度 1300	(字节)
▼ 多TCP连接	流控	无	数据包间隔(越小越好) 3	(臺秒)

图 8 设备参数

在这个界面中,用户可以设定设备的参数,然后点击"修改设置",则参数 被设置到设备的 flash 中,掉电不丢失。同时设备会自动重启。

这里主要配置的参数有: 串口设置中的波特率、数据位、校验位; 网络设置中的 IP 地址、子网掩码、网关; 有的时候根据计算机软件, 还需要配置串口服务器的工作模式。

其它参数详细含义如下:

表 4 参数含义

参数名	取值范围	含义
虚拟串口	不使用、创建的虚拟串	可以将当前设备与某个已创建的虚拟串口绑定。
		请先在主界面的"串口管理"添加 COM 口。
设备型号		只显示核心模块的型号
设备名称	任意	可以给设备起一个易读的名字,最长为9个字
		节,支持中文名字。
设备 ID		出厂唯一 ID,不可修改。
固件版本		核心模块的固件版本
该设备支持的		参考表 5 设备支持的功能
功能		

IP 模式	静态、DHCP	用户可以选择静态或 DHCP(动态获取 IP)
IP 地址		串口服务器的 IP 地址
端口	0~65535	串口服务器处于 TCP Server 或 UDP 模式时的监
		听端口。作为客户端时,最好指定端口为0端口,
		有利于提高连接速度,当使用0端口时系统将随
		机分配一个本地端口。此时和非零端口的区别
		是: (1)本地端口为0时,模块重启时和PC
		机重新建立一个新的 TCP 连接,老的 TCP 连接
		可能不会被关闭,和设备可能存在多个假连接。
		一般上位机希望在模块重启时关闭老的连接;指
		定非零端口会关闭老连接。(2)本地端口为0
		时,TCP 重新建立连接的时间较快。
		串口服务器处于 TCP 客户端模式时,同时作为
		TCP 服务器在端口监听连接。同时 TCP 客户端
		连接到服务器所使用的本地端口号是"端口+1"。
工作模式	TCP 服务器模式、TCP	设置为 TCP 服务器时,串口服务器等待计算机
	客户端模式、UDP 模式、	连接;设置为 TCP 客户端时,串口服务器主动
	UDP 组播	向目的 IP 指定的网络服务器发起连接。
子网掩码	例如: 255.255.255.0	必须与本地局域网的子网掩码相同。
网关	比如: 192.168.1.1	必须与本地局域网网关相同。。
目的IP或域名		在 TCP 客户端或 UDP 模式下,数据将发往目的
		IP 或域名指示的计算机。
目的端口		在 TCP 客户端或 UDP 模式下,数据将发往目的
		IP 的目的端口。
波特率	300、600、1200、2400、	串口波特率
	4800 、 7200 、 9600 、	
	14400、19200、28800、	
	38400、57600、76800(即	
	921.6Kbps) 、115200、	
	230400、460800	
数据位	5, 6, 7, 8, 9	

校验位	无、偶、奇、标记、空	
	格	
停止位	1、2	
流控	无流控、硬流控	硬流控仅对 RS232 串口有效
	CTS/RTS 、 硬 流 控	
	DTR/DCR 、 软 流 控	
	XON/XOFF	
DNS 服务器		当目的 IP 以域名描述时,需要填写这个 DNS 服
		务器 IP。在 IP 模式为 DHCP 时,不用指定 DNS
		服务器,它将会自动从 DHCP 服务器获取。
目的模式	静态、动态	TCP 客户端模式下:使用静态目的模式后,设备
		连接服务器连续5次失败后会自动重启设备。
转化协议	NONE 、 Modbus	NONE 表示串口到网络的数据转发是透明的;
	TCP<->RTU、Real_COM	Modbus TCP<->RTU 将会把 Modbus TCP 协议直
		接转化为 RTU 协议,方便与 Modbus TCP 协议
		配合; RealCOM 是为了兼容老版本 REAL_COM
		协议而设计的,是虚拟串口方式的一种协议,但
		是使用虚拟串口时,并不一定需要选择 RealCom
		协议。
保活定时时间	0~255	心跳间隔。(1)选择为1~255时,如果设备处
		于 TCP 客户端工作模式,则会自动每隔"保活
		定时时间"发送 TCP 心跳。这可以保证链路的
		TCP 有效性。设置为 0 时,将无 TCP 心跳。(2)
		设置为0~254时,当转化协议选择为
		REAL_COM 协议时,每隔保活定时时间,设备
		将会发送一个长度为1内容为0的数据,实现
		Realcom 协议中的心跳机制。设置为 255 时将无
		realcom 心跳。(3) 设置为 0~254 时,如果设
		备工作于 TCP 客户端,设备将每隔保活定时时
		间将发送设备参数到目的计算机。设置为255时
		将无参数发送功能,可以实现远程设备管理。

断线重连时间	0~255	处于 TCP 客户端模式时,当未连接成功时,每
		个"断线重连时间"向计算机重新发起 TCP 连
		接。可以为0~254秒,如果设置255,则表示
		永远不进行重连。注意第一次 TCP 连接(比如
		硬件上电、通过 zlvircom 软件重启设备、无数据
		灯是)一般会马上进行,只有第一次连接失败后
		才会等待"断线重连时间"后重新尝试,所以"断
		线重连时间"不会影响网络和服务器正常情况下
		的连接建立时间。
网页访问端口	1~65535	默认是 80
所在组播地址		UDP 组播时用到
所在组播地址 启用注册包		UDP 组播时用到 当 TCP 连接建立时,向计算机发送该注册包。
所在组播地址 启用注册包		UDP 组播时用到 当 TCP 连接建立时,向计算机发送该注册包。 启用注册包之后必须选择 realcom 协议。支持
所在组播地址 启用注册包		UDP 组播时用到 当 TCP 连接建立时,向计算机发送该注册包。 启用注册包之后必须选择 realcom 协议。支持 TCP 服务器和 TCP 客户端方式。
所在组播地址 启用注册包 数据包长度	1~1400	UDP 组播时用到 当 TCP 连接建立时,向计算机发送该注册包。 启用注册包之后必须选择 realcom 协议。支持 TCP 服务器和 TCP 客户端方式。 串口分帧规则之一。串口服务器串口在收到该长
所在组播地址 启用注册包 数据包长度	1~1400	UDP 组播时用到 当 TCP 连接建立时,向计算机发送该注册包。 启用注册包之后必须选择 realcom 协议。支持 TCP 服务器和 TCP 客户端方式。 串口分帧规则之一。串口服务器串口在收到该长 度数据后,将已接收数据作为一帧发送到网络
所在组播地址 启用注册包 数据包长度	1~1400	UDP 组播时用到 当 TCP 连接建立时,向计算机发送该注册包。 启用注册包之后必须选择 realcom 协议。支持 TCP 服务器和 TCP 客户端方式。 串口分帧规则之一。串口服务器串口在收到该长 度数据后,将已接收数据作为一帧发送到网络 上。
所在组播地址 启用注册包 数据包长度 数据包间隔	1~1400 0~255	UDP 组播时用到 当 TCP 连接建立时,向计算机发送该注册包。 启用注册包之后必须选择 realcom 协议。支持 TCP 服务器和 TCP 客户端方式。 串口分帧规则之一。串口服务器串口在收到该长 度数据后,将已接收数据作为一帧发送到网络 上。 串口分帧规则之二。当串口服务器串口接收的数
所在组播地址 启用注册包 数据包长度 数据包间隔	1~1400 0~255	UDP 组播时用到 当 TCP 连接建立时,向计算机发送该注册包。 启用注册包之后必须选择 realcom 协议。支持 TCP 服务器和 TCP 客户端方式。 串口分帧规则之一。串口服务器串口在收到该长 度数据后,将已接收数据作为一帧发送到网络 上。 串口分帧规则之二。当串口服务器串口接收的数 据出现停顿,且停顿时间大于该时间时,将已接

设备支持的功能解释如下:

表 5 设备支持的功能

名称	说明
网页下载	支持通过网页来控制串口输出指令,只有尾缀为W的产品有该
	功能。
域名系统	目的 IP 可以为域名(比如开头的 www 服务器地址)。
REAL_COM 协议	一种非透传的串口服务器协议,适合于多串口服务器通过 Internet
	进行虚拟串口的绑定。因为协议内部含有设备 MAC 地址所以有
	助于上位机识别设备。一般情况下可以不使用。
Modbus TCP 转 RTU	只有型号第3位为4的支持该功能。可以实现 Modbus TCP 转

	RTU。同时也支持多主机功能。
串口修改参数	支持串口类 AT 指令进行设备参数的配置和读取。
自动获取 IP	支持 DHCP 客户端协议
存储扩展 EX 功能	后续扩展
多 TCP 连接	作为 TCP 服务器的时候支持多于 1 个 TCP 连接。
IO 端口控制	型号第3位为4的型号支持任意自定义指令来控制8个IO输出。
UDP 组播	UDP 组播
多目的IP	作为 TCP 客户端的时候支持同时连接 7 个目的 IP。
代理服务器	支持代理服务器功能(需要特定型号)。
SNMP 功能	支持 SNMP 转 Modbus RTU 协议。只有尾缀为-SNMP 的才支持
	该功能。
P2P 功能	支持通过 P2P 穿越技术实现对任意网络中的设备的访问的功能。
	尾缀为N的型号支持该功能。

4.5 TCP 通讯测试

在配置完设备参数后,可以用串口工具、TCP 调试工具进行 TCP 连接通讯测试。

图 9 TCP 通讯示意图

假设现在 PC 机的 COM 口(USB 转 RS485 线)和串口服务器的串口连接, 那么打开 ZLComDebug(<u>http://www.zlmcu.com/download/Comdebug.rar</u>)串口调 试助手,并打开对应 COM 口图 5;打开 TCP&UDP 调试助手 SocketTest (<u>http://www.zlmcu.com/download/SocketTest.rar</u>),并作为 TCP 客户端方式,填

写目的 IP 为串口服务器的 IP (目前为 192.168.1.200),目的端口为 4196,然后 点击"打开"按钮图。在 SocketTest 中输入"socket send"点击发送,则数据 通过串口服务器的网口转到 RS485 接口,然后再发送到 ZLComDebug,接着在 ZLComDebug 中显示出来;反过来,在 ZLComDebug 中输入"Comdebug send", 点击发送也可以发送到 socket test,并显示出来。

串口服务器的串口转网口、网口转串口数据透明转发功能。

》卓岚串口调试工具-http	p://www.zlmcu.com	×
通信设置 串口号 COM4 ▼	sockettest send	*
波特率(支持手动输入) 115200 ▼		
数据位 8 ▼		
博山辺 I · · · · · · · · · · · · · · · · · ·		
流控制 None ▼ 关闭串口		
□ Hex显示 接收窗口字节 10000		
清除窗口		
发送区设置 「 Hex发送 (如01 02)		
	发送信息(ctrl+Enter输入回车(0xOd,0xOs); \r输入0xOd,\n输入0xOs)	Ŧ
每隔 [100 (ms)	comdebug send	
帧尾字符0x 61	 手动:	发送
□ 收到帧尾后发送 □ 加载自动发送指令		
发送一应答时间差 1941		计数

图 5 comdebug 收发界面

通信设置	接收信息 接收缓冲大小: 2000 字节	
工作模式: TCP客户端 ▼	comdebug send	
本地端口: 0 0表示任意		
UDP目的IP/端口随对方变化 🗖		
目的IP: 192.168.1.200		
目的端口: 4196		
, 所在组播组: 230.90.76.1		
关闭		
接收区设置	友医信忌(ctrifInter和人回年(uxud, uxud), Y和人Uxud, Y和人Uxud)	发送
「 洗择接收文件/信止接收	SURFICESC SERV	位止
海栓索口	-	
	报告 「关闭报告	清空信息
-发送区设置	24743.289846(s) send TCP rcv from socket TCPClient	
	24735.215846(s) send TCP socket TCPClient Send OK!	10
日 母喃 1000	24719.727377(s) send TCP socket TCPClient Send OK!	
友送接收万式: 信息模式 ▼	TCP client connected to 192.168.1.200:4196!	

图 11 sockettest 收发界面

4.6 虚拟串口测试

图 中的 SocketTest 是通过 TCP 和串口服务器直接通信的,为了能够让用户 已有开发好的串口软件也能和串口服务器通讯,需要在用户程序和串口服务器 之间增加一个虚拟串口。如图 所示,ZLVircom 和用户程序在一台计算机上运行, ZLVircom 虚拟一个 COM 口,让这个 COM 口对应这个串口服务器。当用户程序 打开 COM 通讯时可以通过 ZLVircom→串口服务器→发到用户串口设备。下面 演示这个操作步骤:

点击 ZLVircom 主界面的"串口管理",然后点击"添加",选择添加 COM5, 其中 COM5 是计算机原来不存在的 COM 口。

序	虚拟串口	虚拟串口名称	类型	说明		自适	应方式	
0		添加虚	拟串口			x		
		Ē	需要添加的@	сом□:	CON5	•		添加
		Ę "	収个容易记∶ 虚拟串口工↑	名字: 作模式:	 绑定ID(默认)	•		删除
		E	目的IP或域 目的端口:	名:	192.168.1.200 4196			编辑
		ł	篮听端口:		24384			返回
		F	『山変数目』 『虚拟串口	酉№: 注册ID:	按全局(默认)	<u> </u>		
			确定	Ĕ	取消			
			-	-				

图 6 添加虚拟串口

然后进入设备管理,并双击需要和 COM5 绑定的设备。如图 所示,在左上角的"虚拟串口"列表中选择 COM5。然后点击"修改设置"。并返回 ZLVircom 的主界面。可以看到 COM5 已经和 IP 为 192.168.1.200 的设备联通了。此时可以 使用 COM5 代替 SocketTest 进行通信。

区虚拟串ロ	8设备管理器 - VirCom		810*5x85386.1-1	MINET Manual New	
管理(M) 育	配置(C) 查看(V) 帮助(H)				
● 启动服务	停止服务 设备管理	串口管理 关于			
序 状态	ž	虚拟串口	设备名称	设备来路IP	设备ID
1 已连	接	COM5	ZLDEV0001	192.168.1.200	E8147426
「信息」					
[2014-0 [2014-0 [2014-0 [2014-0	05-24,17:07:45] 连接 05-24,17:07:45] 正在 05-18,11:44:53] 在端 15-18,11:44:53] 在端	192.168.1.200 成功。 连接 192.168.1.200 . 口5196监听成功。 口4196监听成功。			*
J.U					

图 7 虚拟串口已经联通

打开 ZLComdebug 来模拟用户的串口程序,打开 COM5(上面的虚拟串口), 另外再打开一个 ZLComdebug 来模拟一个串口设备,打开 COM4(硬件串口)。此 时 COM5 发送数据链路如下: COM5→ZLVircom→串口服务器网口→串口服务 器串口→COM4。反之,COM4 到 COM5 也能传输数据: COM4→串口服务器串 口→串口服务器网口→ ZLVircom→COM5。如图 8 所示双方发送和接收数据情 况。

如果将 COM4 换为用户串口设备,则 COM5 可以实现和用户设备的通讯。

图 8 通过虚拟串口通信

4.7 Modbus TCP 测试

默认情况下,串口和网口数据是透明传输的。如果需要实现 Modbus TCP 转 RTU,则需要在设备设置对话框中,将转化协议选择为"Modbus TCP ←→RTU", 如图 9 所示。此时设备端口自动变为 502,此时用户的 Modbus TCP 工具连接上 串口服务器的 IP 的 502 端口,发送的 Modbus TCP 指令将会转化为 RTU 指令从 串口输出。比如串口服务器网口收到 00 00 00 00 00 06 01 03 00 00 00 0a 的 Modbus TCP 指令,则串口输出 01 03 00 00 00 0a c5 cd 的指令。注意:串口可能 会发送多条 01 03 00 00 00 a c5 cd 指令,这是因为默认的 Modbus 采用存储型方 式,会自动轮训查询指令。后面会讲解如何切换到非存储型方式。

-高级远坝 DNS服务器IP	8.8.4.	4
目的模式	, [动态	•
转化协议	Modbus_TCP 协议	•
保活定时时间	60	(秒)
断线重连时间	12	(秒)

图 9 启用 Modbus TCP 功能

如果用户的 Modbus TCP 软件是作为从站(Slave),则需要在选择转化协议基础上,再将工作模式改为客户端,目的 IP 改为 Modbus TCP 软件所在计算机 IP,目的端口为 502,如图 10 所示。

IP模式	静态
IP地址	192 . 168 . 1 . 223
端口	0
工作模式	TCP 客户端 _
子网掩码	255 . 255 . 255 . 0
网关	192 .168 . 1 . 1
目的IP或域名	192.168.1.189 本地IF
目的端口	502

图 10 Modbus TCP 做客户端。

4.8 Web 方式配置

使用 ZLVircom 可以在不同的网段内搜索和配置设备参数,Web 方式配置需 要首先保证计算机和串口服务器处于同一个 IP 段,且需要预先知道串口服务器 的 IP 地址。但是 Web 配置可以在任何一台没有 ZLVircom 的计算机上进行。

1. 在浏览器中输入串口服务器的 IP 地址,例如 http://192.168.1.200,打开如下 网页。

S Login × +		~	-	×
← → C ▲ 不安全 192.168.1.20	0	Ŀ		:
ZL	ΔN			
	ZLAN Device Management			
	Please input key			
	Login			

图 11

2. 在 Password 中输入密码:默认为无密码。点击 login 按钮登录。

ZLAN				English 通出
対页配置 配置工具 物后中心	设备信息 设备名称: ZLDEV0001 设备(D): 28-63-FA-DE-54-7A 国性版本: V1.452	网络设置 IP標式: IP地址: 读口:	静态 ¥ 192.168.1.200 4196	
	串口设置 波特率: 115200 ↓ 数据位: 8 ↓ 校验位: 元 ↓ 停止位: 1 ↓	工作模式: 子网掩码: 网关: 目的IP成域名: 目的调口:	TCP 服务器 ~ 255 255 255 0 192.168.1.1 192.168.1.3 4196	
	游說:无 ◆ 多主机设置 峰化协议:无 ◆ 指令应答组时时间 0 32-8000ms	网页访问读曰: 高级设置 无数据里启时间:	80 葉用~ 300	5~1270 EØ
	多主机设定 禁用 ✔ 空闲时间间周 0 5-255ms 注:当多主机功能被禁用时,超时时间将始终为0、超时时间必 须为32的信款。	断线重连时间: 修改密码 新密码: 再次输入新密码:	12	1-255 10
		_	_	提交修改

图 12 Web 配置界面

- 在出现的网页中可以修改串口服务器参数,相关参数可以参考表 4 参数含 义。
- 4. 修改参数后点击"提交修改"按钮。

5. 工作模式和转化协议

在不同的应用场合可以选择的不同的串口服务器工作模式、转化协议,从而 能够更加稳定可靠的使用,下面详细介绍。

串口服务器的使用基本分为两种:带虚拟串口和非虚拟串口,分别如图 9 TCP 通讯示意图和图 12 虚拟串口的作用所示。带虚拟串口方式需要对接的用 户软件是串口接口的(COM 口),即用户软件和用户设备都是串口;非虚拟串 口的方式用户软件是直接 TCP/IP 通讯的但是用户设备仍然是串口的。

在非虚拟串口方式时,在"转化协议部分"又分为透明传输、Modbus TCP 转 RTU 和 Realcom 协议 3 种方式。如果用户软件是固定协议的 Modbus TCP 协

议而下位机是 Modbus RTU 时,需要选择 Modbus TCP 转 RTU 方式; Realcom 协议目前只在多串口服务器作为 TCP 客户端连接某个服务器,且服务器上使用 虚拟串口的时候用。

用法汇总如下:

编号 虚拟串口 设备工作模 转化协议 说明 使用 式 适合于用户软件打开 COM 口 使用 TCP 服务器 无 1 主动采集数据的场合。 使用 TCP 客户端 无 2 适合于设备主动上发数据的场 合,如果选择 TCP 服务器则可 能出现设备断线后无法重连的 问题。 Modbus TCP 转 RTU 适用于用户软件是 Modbus 3 不使用 TCP 服务器 TCP,用户设备是Modbus RTU。 且 Modbus TCP 做主站的情况。 4 不使用 TCP 客户端 Modbus TCP 转 RTU 适用于用户软件是 Modbus TCP,用户设备是Modbus RTU。 且 Modbus RTU 做主站的情况。 5 使用 TCP 客户端 Realcom 协议 多串口服务器作为 TCP 客户 端,且使用虚拟串口时,最好 使用 Realcom 协议。 无 适用于设备数量众多,连接一 6 不使用 TCP 客户端 个云端的方式。且一般情况下 云端是在 Internet 上的一个公网 IP 的服务器。 7 不使用 TCP 服务器 无 适用于设备和计算机都在同一 个本地网络,在本地进行监控, 无需跨 Internet 通讯。

表 6 网络配置模式

5.1. 虚拟串口模式

如果用户软件是使用 COM 口进行通讯的,则必定需要使用虚拟串口模式。 包括一些 PLC 软件、组态软件、仪表软件等。

再看监控计算机和设备是否都在本地网络:

- a) 如果计算机是在 Internet 上租赁的一台公网 IP 的服务器,那么设备必然 要使用 TCP 客户端方式,让设备连接服务器。此时可以选择表 6 中的
 ②和⑤,如果是多串口服务器的则必须选择⑤。
- b) 都在本地网络(能够互相 ping 通的),则看是上位机主动查询还是设备 主动上发数据。如果设备主动上发的必然要使用设备做 TCP 客户端的② 方式,否则可以选择①方式。

5.2. 直接 TCP/IP 通讯模式

如果不需要 Modbus TCP 协议转化也不需要虚拟串口的,此时用户软件可能 是直接和串口服务器的网口进行 TCP/IP 通讯,串口服务器将 TCP/IP 数据转为 串口数据发给串口设备。

一般此类用法用户都是自己开发上位机网络通讯软件,集成了设备的串口通 讯协议的解析。此种方法比虚拟串口更加灵活和高效。对应表 6 中的⑥和⑦。

在"4.5TCP 通讯测试"一节主要简单讲述了串口服务器作为 TCP 服务器的时候如何进行通信。这里将讲述 TCP 客户端、UDP 模式、多 TCP 连接如何和计算机软件通讯。其中计算机软件以 SocketTest (模仿用户 TCP/IP 通讯的软件)为例。

卓岚串口服务器遵守的是标准的 TCP/IP 协议,所以任何遵守该协议的网络终端都可以和串口服务器通信,卓岚科技提供了网络调试工具(SocketDlgTest 程序)来模拟网络终端来和串口服务器通信。

要想两个网络终端(这里是网络调试工具和串口服务器)能够通信,其参数 配置必须需要配对。

5.2.1. TCP 客户端模式

TCP 模式下工作模式有两种: TCP 服务端和 TCP 客户端,无论采用哪一种 模式,必须一方是服务端,另一方是客户端,之后客户端才能访问服务端,都 为客户端或者服务端则无法实现通信。 当串口服务器作为客户端时,必须有 3 个对应关系,图 13 所示。(1)工作模式对应:串口服务器的工作模式为客户端对应网络工具的服务器模式,(2)IP 地址对应:串口服务器的目的 IP 必须是网络工具所在计算机的 IP 地址,(3)端口对应:串口服务器的目的端口必须是网络工具的本地端口。这样设置后串口服务器即可自动连接网络工具,连接建立后即可收发数据。

网络设置——		通信设置
IP模式	静态 💽	工作模式: TCP服务器 ▼
IP地址	192 .168 . 1 .200	本地端口: 1024 0表示任意
端口	1025	Botre livery 20501 -
工作模式	TCP 客户端	
子网掩码	255 .255 .255 . 0	目的端口: 4196
网关	192.168.1.1	所在狙播组: 230,90,76,1
目的IP或域名	192. 168. 1. 101 🚽	1
目的端口	1024	<u></u>
zlvirco	加配置设备	SocektTest模拟用户软件

图 13 串口服务器作为客户端

5.2.2. 客户端连接多个服务器

当卓岚串口服务器作为 TCP 客户端的时候可以同时连接 7 个目的 IP 地址, 串口发送的数据会同时发送到 7 个目的 IP。如果没有那么多服务器,则空缺其 余的目的 IP。其使用方法如下:

网络皮丘 IP模式	静态
IP地址	192 . 168 . 1 . 200
端口	0
工作模式	TCP 客户端
子网掩码	255 . 255 . 255 . 0
网关	192 . 168 . 1 . 1
目的IP或域名	192.168.1.189 本地IF
目的端口	1024

图 14 第一个目的 IP 和端口

上海卓岚信息科技有限公司

「多目的IP和端口——		
192.168.1.100	1024	客户端目的 💌
192.168.1.101	1025	客户端目的 🛃
192.168.1.102	1026	
192.168.1.103	1027	
192.168.1.104	1028	
192.168.1.105	1029	

图 15 剩余 2~7个 IP 和端口

第一个 IP 在如图 14 所示的设备设置界面设置,其中第一个 IP 可以是域名。 剩余的 2~7 个目的 IP 在设备设置界面中点击"更多高级选项"按钮,打开更多 高级选项进行设置。

所有的 7 个目的 IP 设置完毕后可以自动进行连接,如果连接不上则会等待 "断线重连"时间后反复重连。

5.2.3. TCP 服务器模式

当串口服务器作为服务端时,也有3个对应关系,如图 16 所示,这里不一一解说。这样设置后点击网络工具的打开按钮即可和串口服务器建立 TCP 连接, 连接建立后即可收发数据。

- 网络设置 ——		┌通信设置
IP模式	静态	工作模式: TCP客户端 ▼
IP地址	192.168.1 .200-	本地端口: 0 0表示任意
端口	1025	BOTT 192 168 1 200
工作模式	TCP 服务器 🗲	Hayir . 152.100.1.200
子网掩码	255 .255 .255 . 0	目的端口: 1025
网关	192.168.1.1	所在组播组: 230.90.76.1
目的IP或域名	192.168.1.101	
目的端口	1024	打开

zlvircom配置设备 SocektTest模拟用户软件

图 16 串口服务器作为服务端

串口服务器作为服务端时,可以同时接受 30 个 TCP 连接。串口收到的数据 会转发给所有的已经建立的 TCP 连接。如果需要实现数据只发送给最近接收过 网络数据包的 TCP,则需要启用多主机功能,请参考 7.4 多主机功能。

5.2.4. 既做客户端又做服务器

卓岚串口服务器支持在设备处于TCP客户端的方式下也能够接受TCP连接,也就是也具有TCP服务器功能。

IP模式	静态
IP地址	192 . 168 . 1 . 200
端口	1024
工作模式	TCP 客户端 ▼
子网掩码	255 . 255 . 255 . 0
网关	192 . 168 . 1 . 1
目的IP或域名	192.168.1.189 本地IP
目的端口	1024

图 17 既做客户端也做服务器

默认情况下在使用 ZLVircom 进行配置的时候,如果将工作模式修改为"TCP 客户端"方式,则端口(也就是本地端口)自动会变为0(0表示随机选择一个 空闲端口)。为了能够支持作为 TCP 服务器模式,计算机软件必须知道设备的 本地端口,所以这里需要指定一个数值,如图 17 所示,计算机软现在可以连接 192.168.1.200 的 1024 端口进行通讯,同时设备还会作为客户端连接 192.168.1.189 的 1024 端口。需要注意的是,由于本地端口 1024 被服务端占用,所以当作为客户端的时候本地端口使用的是"端口+1",也就是 192.168.1.189 上的软件看到设备的来路端口是 1024+1=1025。

5.2.5. UDP 模式

在 UDP 模式下,参数配置如图 18 所示,左边为 ZLVircom 中串口服务器的 配置,右边为网络调试工具 SocketDlgTest 的设置。首先必须两者都是 UDP 工作 模式。另外用红色箭头表示的,网络工具的目的 IP 和目的端口必须指向串口服 务器的本地 IP 和本地端口。用蓝色箭头表示的,串口服务器的目的 IP 必须是网 络工具所在计算机的 IP 地址,而串口服务器的目的端口必须是网络调试工具的 本地端口。这些网络参数配置好后才能保证双向的 UDP 数据通信。

网络设置——		_ 通信设置 —		
IP模式	静态 👤	工作模式:	IDP	-
IP地址	192 .168 . 1 .200 🔫	本地端口:	1024	
端口	1025	Hóhrp ·	192 16	8 1 200
工作模式	VDP 模式 📑	HHUIT .	1.02.10	_
子网掩码	255 .255 .255 . 0	目的端口:	1025	
网关	192.168.1.1	所在组播组:	230 . 9	0.76.1
目的IP或域名	192. 168. 1. 101	/		
目的端口	1024		打开	

图 18 UDP 模式参数配置

5.3. 设备对联方式

如果上位机不是 Socket 程序(SocketDlgTest)也不是虚拟串口,而是两台设 备通过网口对连的,配置方法也是类似的。首先用户需要将2台设备、计算机 连接到同一个局域网中。这台计算机上运行 ZLVircom,连接计算机的目的只是 为了配置,配置完成后计算机可以不必连接。

点击 ZLVircom 的设备管理,找到这 2 台设备,如图 20 所示。然后点击"设备编辑",对设备进行配置。设备对联可以分为 TCP 对联和 UDP 对联。如果是 TCP 对联方式,两台设备的参数如图 19 所示。箭头所示的参数必须对应起来,如同和 PC 机连接的对应方式一样。TCP 连接成功后,可以通过回到"设备管理" 对话框看连接状态,如图 20 所示,如果两台设备的状态都是"已连接"则表示 两台设备的 TCP 链路已经建立。

图 19 TCP 设备对联参数配置

	序	网络	设备名称	备名称 设备IP 目的IP		模式	TCP连接	虚拟串口号	虚拟串口状态
	1	内网	ZLDEV0001	192.168.1.201	192.168.1.200	TCP Client	已建立	未设置	未联通
ľ	2	内网	ZLDEV0001	192.168.1.200	192.168.1.1	TCP Server	已建立	未设置	未联通

图 20 TCP 设备对联成功检查

如果是 UDP 方式对联的,配置参数如图 21 所示,箭头对应的参数必须 是一一对应的。UDP 对联只要参数配置正确不必检查连接状态,发送的数据会 自动发送到指定的设备。

图 21 UDP 设备对联参数配置

最后需要提醒一下,如果是设备对联的,除了网口参数按照以上设置外,还 必须设置正确的串口参数。主要是串口服务器的波特率等需要和用户的设备的 波特率等一致。这样设置以后,用户设备可以通过两台串口服务器的串口互相 发送数据。

6. 设备调试

6.1. 网络物理连接

串口服务器可以使用交叉网线或者直连网线连接交换机或者直接连接计算 机网口。

连接建立后第一步需要查看 NET 灯是否亮,否则请检查网线是否连接好。

6.2. 网络 TCP 连接

当设备作为动态获取 IP 的方式的时候,不能够直接连接计算机网口。因为 没有 DHCP 服务器可以用(一般 DHCP 服务器就是局域网中的路由器)。所以

直连的时候请指定 IP。同时计算机也需要指定固定 IP。

		Internet 协议版本 4 (TCP/IPv4) 雇性
网络设置 IP模式 IP地址	静态 192 . 168 . 1 . 200	常规 如果网络支持此功能,则可以获取自动指派的 IP 设置。否则, 您需要从网络系统管理员处获得适当的 IP 设置。
端口 工作模式	4196 TCP 服务器 ▼	 ○ 自动获得 IP 地址 (0) ◎ 使用下面的 IP 地址 (S):
子网掩码 网关	255 . 255 . 255 . 0 192 . 168 . 1 . 1	IP 地址(I): 192.168.1 子网摘码(U): 255.255.0

ZLVircom中的设备IP

计算机上的IP配置

图 29 配置在同一个网段

无论是直连还是通过交换机,当配置为静态 IP 的时候,设备和计算机需要 在同一个网段(除非是跨网关通讯),如图 9 所示。

由于 ZLVircom 支持跨网段搜索和配置,所以能够搜索但是无法通讯的一般 是 IP 地址没有配置好,此时可以用 ZLVircom 将设备配置在同一个网段。

配置好以后使用 4.5 TCP 通讯测试或者 4.6 虚拟串口测试的步骤可以看到建 立 TCP 连接的时候 Link 灯变为蓝色。Link 灯蓝色也可以通过 ZLVircom 看到, 如设备管理列表中,如果 TCP 连接一列为"已建立"则表示 Link 灯是蓝色的, 如图 22 这可以方便进行远程诊断。

	~ T											-	
序	类型	设备名称	P.	设备IP	本地	目的IP	模式	TCP连	虚拟串口	虚拟串口状	设备ID	TXD	RXD
1	内网	ZLDEV0001		192.168.1.200	1024	192.168.1.189	TCP Client	已建立	未设置	未联通	B25ED458		44
1													

图 22 连接状态和数据收发状态

6.3. 数据发送和接收

当 Link 灯亮之后,软件和串口服务器之间就可以进行数据收发了。此时如 果软件发送一个数据则 Active 灯会亮,持续时间一般会至少1秒钟。数据也会 从串口服务器的串口输出,但是输出数据是否正确还需要看是否配置了正确的 串口参数(波特率、数据位、停止位、校验位)。

对于正确的下发指令串口设备一般会进行回复,一旦有回复(串口向网口发送数据)则 Active 会亮,否则请检查串口参数或者串口线是否连接有问题。

为了方便远程调试 ZLVircom 也支持远程看收发数据情况,如图 22 所示,

其中的 TXD 就是串口服务器串口发出的数据量,当刷新设备列表时,看到这个数值有变化则表明有下发数据,Active 灯也会亮;如果看到 RXD 这个数值在变化则表明串口设备有返回数据,Active 会亮。

6.4. ZLVircom 远程监视数据

在使用虚拟串口的情况下,ZLVircom 支持实时抓取虚拟串口收发的数据。 方便用户调试系统,使用方法如下:

假设现在已经按照 4.6 虚拟串口测试的方法建立了虚拟串口的通讯。现在需要监控通过虚拟串口的数据。打开 ZLVircom 的菜单/ 配置/ 软件配置/ 打开 vircom 配置对话框。

图 23 启用 ZLVirocm 监视

在开启监视、十六进制监视模式、显示数据收发时间3个选项前面打勾,如 图 23。然后点击确定。假设之前已经进行过数据的收发,现在在主界面中选择 需要监控的一个虚拟串口,然后选择菜单/查看/监视,如图 24 所示。

1	ZI 虚拟串口&设备管理器 - VirCom									
	管理(M) 配置(C) 查看(V) 帮助(H)									
		🔪 🌈 清除(記(C)	A						
		🥖 🕒 监视(M)	9						
	启动	1服务 停止服务 设备	昏寶 串口管理 乡	€ 手						
	序	状态	虚拟串口	虚拟串口名称	类型	设备IP				
	1	已连接	COM5		绑定ID	192.168.1.200				

图 24 打开 ZLVirocm 监视

从打开的对话框可以看到上位机下发的指令和设备返回的指令,如图 25 所示。该功能可以方便进行现场通讯调试。

上海卓岚信息科技有限公司

数据监	视																	
设备	名称:	ZLDEV0001		设备IP:	192	.168	. 1. :	200		最大	发送	缓冲	量:	0				
虚拟	串口打	开后写入:	16		读取	: 1	2											
TCPi	主接建立	Z后发送:	16		接收	: 1	2											
一最近	5接收的]信息———						45			0.45	45		-				
113	5,17:05	5:07,25197.	609	0(S)]70	63 2	0 63	Ьŀ	БD	64	20 7	3 65	bЕ	64	1				
最近	立发送的]信息																1
[13	3,17:05	o:01,25192.	095	1 (S)]76	69 7	2 74	75	61	6C	20 6	3 6F	6D	20	73	65	6E	64	ł

图 25 监视收发数据

7. Modbus 高级功能

带 Modbus 网关功能的串口服务器本身不具备站地址和寄存器,它是一个通讯的桥梁,它会根据用户软件发给 Modbus 网关的 Modbus TCP 指令中的 Salve ID、功能码、寄存器号、寄存器数量产生 Modbus RTU 指定,并从串口输出。可以将其视为一个协议"翻译器"。

7.1. 启用 Modbus 网关

首先串口服务器应该是支持 Modbus 网关的也就是设备设置对话框中表 5 设备支持的功能中的 "Modbus TCP 转 RTU" 功能应该是打勾的。

默认情况下串口服务器处于普通透传模式,如果需要转化到 Modbus 网关模 式,请在"转化协议"中选择"Modbus TCP←→RTU"这个选项。此后设备自 动将"端口"参数修改为 502(Modbus 服务器的端口)。这样 Modbus 网关就 启用了。

串口 RTU 设备作为从站,则上位机 Modbus TCP 软件连接 Modbus 网关的 502 端口,此时 Modbus 网关需要工作在 TCP 服务器模式;如果串口 RTU 作为 主站,则 Modbus 网关工作在 TCP 客户端, 且目的 IP 填 Modbus TCP 软件所在

计算机的 IP, 目的端口一般为 502。

7.2. 存储型 Modbus 网关

新一代的 ZLAN5407M(末尾为 3 的都是存储型)是寄存器保存型 Modbus 网关,与普通的 ZLAN5142(末尾是 2 或者 0 的都是非存储型)相比 ZLAN5407M 可以将读取的寄存器的内容保存在网关内部,这样 Modbus TCP 查询的速度可以 大大提高,支持多主机访问时性能更加优越。

如图 26 所示: 普通的 Modbus TCP 数据流方向为 $(1) \rightarrow (2) \rightarrow (3) \rightarrow (4)$ 。 即先将 Modbus TCP 指令转化为 Modbus RTU 的对应指令, 然后设备应答 Modbus RTU 指令给 Modbus 网关, 然后 Modbus 网关再次转化为 Modbus TCP 发送给监 控上位机。

我们知道 Modbus TCP 是网络通信,传输速度很快,一般在 3ms 内可以应答, 而 Modbus RTU 是 RS485,一般只有 9600bps 的速度,一般发送和返回一条指令 至少要 30ms。这样普通的非存储方式的 Modbus 网关的查询应答时间比较长。 另外如果同时有很多的上位机同时去查询数据,那么串口就会拥堵。如果网络 比作是高速公路,串口比作独木桥,那么原来的方式就是要在独木桥上通行高 速公路的车流量。

寄存器保存型的 Modbus 网关(ZLAN5407M)解决了以上的问题。它能够 将查询获得的寄存器数据暂时保存在 Modbus 网关内部,这样 Modbus TCP 查询 来的时候,Modbus 网关可以立即返回指令,真正将 Modbus TCP 的快速的特性 发挥出来。另一方面 ZLAN5407M 可以主动从串口发送指令自动更新当前保存 的寄存器的数据的内容,保存一份最新的寄存器值。

另外 ZLAN5407M 是一款全自动免配置的 Modbus 网关,用户无需配置所需的寄存器地址、功能码、从站地址等。ZLAN5407M 会根据网口发来的 Modbus TCP 指令自动识别、动态添加这些寄存器。

在多台计算机监控的时候 ZLAN5407M 可以表现出良好的反应速度,不论串口是什么波特率,一般能够在 3ms内给上位应答数据。且表现出了良好的串口数据实时更新的速度。

寄存器保存型的 Modbus 网关是真正意义上的 Modbus TCP 转 Modbus RTU, 它真正发挥了 Modbus TCP 速度快、可多主机同时查询的优势。

注意当串口服务器作为 TCP 客户端时,不具有存储型功能,将自动切换到 非存储型。

以下列出存储型 Modbus 的特性:

- 第一条 Modbus TCP 查询指令是非存储型的。因为必须等待 RTU 设备慢速 返回数据后才能给网口回复寄存器内容。
- 如果某条特定的指令在5秒内不再有网络端的上位机查询,则自动删除这条 指令,不再从串口发往 RTU 设备。
- 3. 目前可以存储 10K 的 Modbus 缓存,对于普通的单寄存器查询,大约同时存储 500 条指令。
- 4. 当有多条指令同时在被查询的时候,按照先后次序发送,第一条指令发送→
 第一条指令应答→等待 485 防冲突时间(参考多主机部分)→第二条指令发送・
 送・・・・・。到最后一条指令应答完毕后再回到第一条指令。

7.3. 禁用存储型功能

尽管存储型 Modbus 具有较快响应速度,但是某些用户不希望 RTU 设备不希望接收大量的查询指令,影响仪表内部处理速度。此时可以关闭存储型功能。

禁用存储型的方法是,在"参数配置"对话框中点击"更多高级选项"按钮, 图 27 所示,选择非存储型 Modbus 网关。

图 27 禁用存储型功能

7.4. 多主机功能

如图 27 所示的"RS458 多主机支持"和"RS485 总线冲突检测功能"就是 卓岚的多主机功能。它们一般是同时启用和同时禁用的。启用后让转化协议为 Modbus TCP 的设备具有存储型 Modbus 网关功能,否则为非存储型 Modbus 网 关;如果转化协议为无,一般可以让用户自定义的 RS485 协议也具有多个主机 同时访问的串口设备的功能,这在纯粹的 RS485 网络中是无法实现的,因为多 个主站同时发送会在 RS485 总线上产生冲突。卓岚串口服务器的多主机可以对 RS485 总线进行"协调"从而达到多主机访问的目的。

图 28 多主机功能演示

如图 28 所示, 普通方式下, 当两台主机: 主机 A 和主机 B 同时连接上串口

服务器,此时主机 A 发送(1)指令, RS485 设备收到(2)指令, RS485 设备返回(3) 指令,但是在串口服务器其网口端会同时发送(4)给主机 A 和(5)发给主机 B。由 于主机 B 没有发送查询,但是它也收到了应答指令(5)所以,主机 B 可能会产生 通讯异常错误。在多主机模式下,只会有指令(4)而不会有指令(5),因为串口服 务器会自动记忆需要返回的主机,只将指令返回给最近的通讯的主机,主机 A 查询只回复给 A, 主机 B 查询回复给主机 B。

另外一个作用是,在普通模式下,主机A和主机B同时发送数据则会在RS485 总线上产生指令的合并,从而无法正常识别;多主机方式下串口服务器可以调 度A、B在使用总线上的先后次序,从而有效方式多机同时访问的冲突问题。

转化协议为"无"情况下,默认是不启动多主机功能的,需要启用多主机的时候,请在设备配置对话框中点击"更多高级选项",然后勾选"RS485多主机支持"。

7.5. 多主机参数

"RS458 多主机支持"和"RS485 总线冲突检测功能"含义介绍如下。

☑ 支持RS485多主机

RS485指令应答超时时间 163 ms(0~8191)

图 29 RS485 多主机支持

其中 RS485 指令应答超时时间为:串口服务器串口从开始发送这条指令到收 到应答的最大时间间隔。填写的时间应大于实际最大的时间间隔。因为如果一 旦判定为超时,将会发送下一条指令。

图 30 RS485 防冲突空闲时间

RS485 总线冲突时间:表示串口服务器在收到第一条指令的回复后等待多少 毫秒后发送第二指令。这个参数实际定义了指令轮训的速度。该值建议在 20ms 以上。"最多等待时间 3 秒"这个参数一般无需修改。

当用户使用 ZLVircom 将转化协议选择为"Modbus TCP 转 RTU 之后" ZLVricom 会自动勾选上述两个启用框(除非用户手动进入高级选项去除),而 且以上两个时间也会自动根据波特率配置好。但是如果用户的 Modus 指令比较 长或者在转化协议为"无"的情况下,则需要手动配置这 2 个参数。 下面介绍以上参数的设置建议值:

- 1. 图 30 所示为 "RS485 总线防冲突时间",一般可以设置为参数配置界面右 下角的"数据包间隔"的两倍,但是最小不能小于 20。
- 图 29 所示为"RS485 指令应答超时时间",一般根据来回应答的指令长度 决定,如果发送指令为N字节,应答为M字节,那么建议设置的值为:"数 据包间隔"×(N+M+5)+100。

7.6. 多目的 IP 下的 Modbus

如图 28 所示,如果串口设备(RTU 设备)作为主站,而网口设备(Modbus TCP 设备)作为从站,且同时存在多个网口从站设备。则此时可以按照 5.2.2 客户端连接多个服务器介绍的方法让串口服务器作为客户端同时连接这多个网口设备。

此时需要实现的功能是:当串口 RTU 发送指令后能够发往多个网口设备, 网口设备通过 Slave ID 字段识别是否发给自己,只有 Slave ID 对应的网口设备 做出应答。网口应答发给串口服务器后转化为 RTU 指令从串口输出发给 RTU 设 备。

此时需要注意的是需要将图 30 所示为"RS485 总线防冲突时间"和图 29 所示为"RS485 指令应答超时时间"的两个勾去掉。否则无法实现上述转发功能。

另外一种应用方式是:虽然串口服务器作为 Client 连接上多个网口设备,但 是 RTU 设备并不是做主站,仍然是网口设备先发送,RTU 设备应答(作为从站)。 则此时"RS485 总线防冲突时间"和"RS485 指令应答超时时间"两个勾还是需 要勾选,这样可以实现多主机同时访问一个 RTU 设备的功能。

7.7. 可配置 Modbus 网关

关于可配置 Modbus 网关 ZLMB,请参考《Modbus 网关的四种类型》 http://www.zlmcu.com/document/Modbus Gateway.html。

8. 注册包和心跳包

注册包和心跳包是适合于设备和云端软件通讯的一个功能。

8.1. 注册包

注册包的定义是,当计算机软件和串口服务器模块(后面简称模块)建立 TCP 连接的时候,模块会首先发送一串编码给软件,这样软件就可以知道是哪 个模块在和自己通讯。这串编码就是注册包。

注册包非常适合于物联网的监控,因为云端软件一般运行在 Internet 的公网 服务器上,而模块分散在各个采集、监控点。如何让云端软件识别模块是非常 重要的,是实现物联网通讯所必须的。

上海卓岚的串口服务器提供以下多种注册报方式。

8.1.1. 连接上发送 MAC 地址

连接上发送 MAC 地址:这种方式不仅对于 4 型号(比如 5143),普通的型 号也同样支持。它的方法是当模块连接上云端的时候将自己的 mac 地址发送到 云端。由于 MAC 地址是唯一的,所以可以唯一识别设备。这种方法简单,且无 需对每个设备进行注册包编写,所以是简单且有效的。使用方法是:在设备设 置对话框中点击"更多高级选项",在中上部找到"TCP 建立时发送 MAC 地址",在前面打勾,然后回到设置界面,点击"修改设置"。

图 31 连接上发送 MAC 地址

8.1.2. Realcom 协议

Realcom 协议是一种含有注册包和心跳包的成熟协议,用户可以使用这个协议来实现注册包和心跳包功能。启用 Realcom 协议的方法是:在"设备设置" 对话框中将"转化协议"选择为"REAL_COM 协议",注意其中启用注册包部 分需要空白,不勾选。

上海卓岚信息科技有限公司

转化协议	REAL_COM 协议	-	
保活定时时间	60	(秒)	
断线重连时间	12	(秒)	
网页访问端口	80		
所在组播地址	230 . 90 . 76	. 1	
- 启用注册包:		ASCI1	

图 32 启用 realcom 协议

启用 Realcom 协议之后将不是透明传输通讯,它有如下的特点:

- 当设备和云端建立 TCP 连接后,设备自动发送一个十六进制注册包 FA 07 13 02 FA 02 MAC[5] MAC[4] MAC[3] MAC[2] MAC[1] MAC[0] FA FF。其中的 MAC[5]~MAC[0]是设备的 MAC 地址。
- 2. 设备向网络发送数据的时候会自动增加 FA 01 01 的 3 个字节的头部前缀。
- 3. 每隔保活定时时间,设备向软件发送一个00的1字节的心跳包。

REAL_COM 协议由于注册包内部含有了 MAC 地址,可以用于作为设备的注册包。但是由于它格式固定,所以只能云端软件来设计 REALCOM 协议来兼容这种方式。

8.1.3. 自定义注册包

自定义注册包方式是用户可以填写一个任意的注册包格式。方法是:在设备 设置界面,配置如下:

转化协议	REAL_COM 协议	-
保活定时时间	60	(秒)
断线重连时间	12	(秒)
网页访问端口	80	
所在组播地址	230 . 90 . 76	. 1
☑ 启用注册包:	31323334	ASCII

图 33 设置注册包

和 REAL_COM 协议的差别是,这里启用了注册包,并填写了 31 32 33 34 这样的注册包信息。注意这里是十六进制,也就是实际上发的数据是字符串 1234。如果需要字符串显示,则点击旁边的"ASCII"选项。

当设备和云端软件连接后可以自动发送 31 32 33 34 的十六进制注册包。这

种注册包方式比较灵活,可以让设备去适应现有的云端注册包格式;但是注册 包内没有 MAC 这样的通配符,需要为每个设备单独配置不同的注册包,较为繁 琐。上面发送 MAC 地址和 REALCOM 两种方法每个设备配置是一样的,但是 由于 MAC 不同注册包自然不同。

最长注册包长度为33字节。该方式支持 UDP 模式的注册包和心跳包。

8.1.4. 配置文件

卓岚的 5143 系列支持串口服务器写一个配置文件,从而实现用户完全自定 义的注册包,并且可以使用 MAC 地址通配符,可以解决为每个设备写自定义注 册包的麻烦,且对注册包长度没有限制。

8.2. 心跳包

心跳包主要用于检测通讯链路是否断开。实现的方法是每隔一段时间设备向 服务器软件发送一个心跳包数据,这个数据被服务器收到后会抛弃,不会当作 通讯有效数据。

心跳包主要有两个作用:首先可以让上位机软件知道设备处于活动状态;其次设备在发送心跳时如果发送失败,则处于 TCP 客户端的设备会自动重新建立 TCP 连接,所以它是一个恢复网络通信的一个手段。

-高级选项	72	201
DNS服务器IP	8.8.4	. 4
目的模式	动态	-
转化协议	REAL_COM 协议	•
保活定时时间	60	(秒)
断线重连时间	12	(秒)
网页访问端口	80	

图 34 保活定时时间

如图 34 所示, 心跳包的发送时间是通过"保活定时时间"来设置的。

8.2.1. 隐含心跳

即使不设置任何的心跳包,卓岚设备处于 TCP 客户端的时候也会启用隐含 心跳功能。所以隐含心跳功能是指设备有发送数据,但是服务器实际收不到心 跳数据。所以它无法起到心跳包的第一个功能,即服务器检测设备活动与否的 功能;但是由于设备实际有发送数据,所以可以起到心跳包的第二个功能,即 起到设备检测 TCP 连接是否正常的功能,一旦检测断线仍然可以自动重新建立 TCP 连接。

8.2.2. REALCOM 协议

如 8.1.2Realcom 协议所述, REALCOM 协议可以在每隔保活定时时间发送一个 00 的 1 字节数据,这个数据就是 realcom 协议的心跳包。

8.2.3. 自定义心跳包

首先按照 8.1.3 自定义注册包的方法填写注册包。然后按照如下的方法增加 心跳包:点击设备设置的"更多高级选项"按钮,在多目的 IP 和端口的第二行, 写上 16 进制的心跳包,并将右边的选项改为"参数包目的"。

多目的IP和端口		
313233	0	参数包目的 💌
616263	0	参数包目的 ▾
	0	

图 35 自定义注册包

注意注册包和心跳包总和要小于 33 字节。第一行实际就是注册包。

9. httpd 客户端通信功能

该功能是用于将串口服务器的上发数据直接发给基于 web 架构的服务器程序,这样可以简化云端的软件开发工作量。

当物联网采集终端和 web 服务器(httpd 程序)进行交互的时候,如果能够 将数据按照 http 的 GET 和 POST 指令的规范格式提交给 web 服务器,那么 web 服务器就可以使用现有的 php/asp 语言对数据进行处理和存储。这样就省去了用 户再开发 web 应用程序接口的工作量。

为了支持这个功能需要在卓岚串口服务器内下载一个 httpd.txt 的配置文件。 下载可以使用 zlvircom 的固件升级功能来实现。

卓岚 httpd 客户端通讯功能的特点包括:

1. 设备上发: 支持以 GET/POST 方式直接将串口数据转化为 http 的格式,能够 被服务器直接识别。

- Web 服务器下发: Web 服务器也可以通过 GET/POST 指令将所需要的数据发送给串口服务器,其中的有效数据内容可以从串口服务器的串口输出。当串口服务器收到数据后,也可以给 Web 服务器一个特定的应答,表明数据收到。
- 3. 支持输入输出数据在十六进制和字符串之间的任意转化,方便 Web 服务器以 字符方式下发数据,而串口以十六进制数据输出来控制串口设备。

详细信息可以参考《卓岚 httpd 客户端通信方式》文档。

10.MQTT 网关

关于 MQTT 网关功能的使用请参考《MQTT 网关的使用方法》 http://www.zlmcu.com/document/Usage_of_MQTT_Gateway.html。《卓岚 MQTT 和 JSON 转 Modbus 网 关 用 法 》 http://www.zlmcu.com/document/MQTT&JSON to Modbus.html;

11. JSON 转 Modbus RTU

关于 JSON 转 Modbus RTU 和相关 JSON 用法,请参考《JSON 数据采集网 关》<u>http://www.zlmcu.com/document/jsondata.html;</u> 《卓岚云与采集设备的使用》 <u>http://www.zlmcu.com/document/zlancloud.html;</u> 《645 仪表以 JSON 格式上发方 法》<u>http://www.zlmcu.com/document/645_Instrument_JSON.html</u>; 《卓岚 MQTT 和 JSON 转 Modbus 网 关 用 法 》 <u>http://www.zlmcu.com/document/MQTT&JSON to Modbus.html</u>;

12.NTP 时间功能

关于 NTP 时间的获取和使用方法请参考: 《卓岚 NTP 时间模块用法》 <u>http://www.zlmcu.com/document/zlan_NTP.html</u>。

13. 网口修改参数

网口修改参数是实现 zlvircom 软件那样搜索设备、修改设备参数的功能,即

通过串口服务器的网口来管理设备和修改参数。适合于将搜索和配置功能集成到用户软件内部的用户。

网口修改参数是通过"UDP管理端口协议"来实现的,比如:

- 1. 计算机软件在网络中发送目的端口为 1092 的 UDP 广播数据包。当设备收到 该数据包后会将自己的信息返回给计算机软件,达到搜索设备的目的。
- 2. 计算机软件向设备的 1092 端口发送 UDP 修改参数命令,达到修改设备参数 的目的。

网口修改参数的详细介绍可以参考《卓岚联网产品 UDP 管理端口协议》文档。也可以直接使用 14 设备管理函数库的设备管理函数库来实现。

14. 设备管理函数库

该功能是是适合于需要将设备管理功能集成到用户自己软件中的用户使用 的。

所述的"UDP管理端口协议"已经集成在设备管理函数库 ZLDevManage 里面了。这是一个 DLL 的 windows 平台的开发库,可以被 VC、VB、Delphi 等各种开发工具调用。

提供有详细的 API 接口介绍文档和 VC 调用 Demo 案例。可以实现设备的搜索、参数修改、P2P 功能调用等。

可以从卓岚官网获得开发库:在<u>http://zlmcu.com/download.htm</u>页面寻找"设备管理函数库"。详细可以参考《卓岚 WinP2p 和设备管理开发库》

15. 串口修改参数

用户可以通过向串口服务器的串口发送指令的方式读取参数、设置参数。适 合于选择芯片或者模块级别的产品通过串口控制和配置的用户。可以设置的参 数包括: IP 地址、波特率、设备名称、工作模式等。新的参数设置完毕后可以 通过串口指令重启串口服务器。

卓岚串口指令有如下的特点:

 串口指令采用10个字节的数据前导码,所以无需通过另外的配置引脚的拉 低拉高来区分是通讯数据还是命令,也无需进行命令模式和通讯模式的切 换,使用更加灵活方便。

- 2. 命令集包含有保存参数、不保存参数、重启设备等多种命令格式。
- 可以实现多种应用,比如读取串口服务器的 MAC 地址,比如修改串口服务器的工作模式当从 TCP 服务器切换到 TCP 客户端模式时,可以主动连接服务器;当从 TCP 客户端切换到 TCP 服务器时可以断开和服务器的连接。

串口修改参数的详细操作方法请参考:《串口修改参数及硬件 TCPIP 协议栈》

16. 远程设备管理

所谓远程设备管理是指通过 ZLVircom 软件能够对设备进行维护和管理,包括重启设备、修改参数、升级固件。该功能适合于通过 ZLVircom 进行设备管理的用户。

对于 ZLVircom 软件,只要能够在设备列表中找到这个设备就可以进行远程 管理。对设备的远程管理分为如下几种情况:

 自动搜索:设备和计算机同一个交换机下,此时无论是否在同一个网段,计 算机上的 ZLVircom 搜索设备方式是:ZLVircom 发送广播查询→所有的设备 收到查询后都将自己的参数回复给 ZLVircom 工具。此方法一次性搜索所有 的设备。

自动搜索

图 36 自动搜索

2. 手动添加:分为两种情况:

图 37 手动添加

- a) 大型路由器分割网络:在一些大型网络中,广播包被路由器所分割,从 而广播包无法到达设备端,但是 ping 设备 IP 都是通的。此时一般需要 手动添加来解决。手动添加的方法是在"设备管理"对话框中点击"手 动添加"添加首尾 IP 即可对设备进行逐一的查询。
- b) 公网服务器查询内网设备: 串口服务器在内部网络且作为 TCP 服务器模式, zlvircom 在公网 IP 的服务器上。此时需要在设备所在的网络的路由

器上做一个 1092 的 UDP 的端口映射,映射到设备所在的 IP,然后 zlvircom 手动添加这个设备, IP 是设备端的公网 IP。

3. TCP 客户端: 设备作为 TCP 客户端的时候, 会向目的 IP (116.15.2.3)的 4196 端口发起 TCP 连接。等连接建立后会自动每个保活定时时间向目的端口(这里是 4196)的 UDP 端口(注意不是 TCP 端口)发送自己的参数系统,从而能够让 zlvircom 在这台计算机(116.15.2.3)上能够搜索到设备。如果目的端口不是 4196 则需要修改 zlvircom 的默认参数接收端口,方法是修改菜单/配置/软件配置/默认监听端口,之后启动 zlvircom 如果弹出 TCP 端口冲突则不用理会继续执行。

图 38 客户端

 24. 定时发送参数:即使处于 TCP 服务器方式的串口服务器,也可以勾选"定时 发送参数"功能,将每隔 5 分钟将参数发送到目的 IP(这里是 116.15.2.3) 的目的端口。在这个服务器的这个端口接收参数的 zlvircom 可以管理这些设 备。

工作模式	TCP 服务器	保活定时时间 60	(秒)
子网掩码	255 . 255 . 255 . 0	断线重连时间 12	(秒)
网关	192 . 168 . 1 . 1	网页访问端口 80	
目的IP或域名	116.15.2.3 本地IP	所在组播地址 230 . 90	. 76 . 1
目的端口	1024	□ 启用注册包:	r ascii
		□ 启用无数据重启 每隔 3	00 (秒)
波特率	115200 💌	▶ 〒 日定时发送参数 每隔 5	(分钟)

图 39 定时发送参数

为了方便识别设备,如果需要进行远程管理的时候,请将设备起一个容易记 住的名字。

17. 固件升级方法

ZLAN5407M 可以升级各自的程序,但是不能够相互升级程序。无论是自动 搜索、手动添加还是 P2P 搜索等方式在设备列表中找到的设备,都可以用此方 法进行升级固件。

- 1 从卓岚获得 ZLSN2003 的固件文件,比如 1.539(2003).BIN。
- 2 在 ZLVircom 工具中,先搜索到这个需要升级的设备,然后进入设备参数编辑对话框。首先点击一次"重启设备"。

┌分包规则 │数据包长	 :度	1300	(字节)
数据包间]隔(越小越好	7) 3	(毫秒)
升级固件	重启设备	修改设置	取消

图 40 升级按钮

设备重启后,用同样的方法再搜索到这个设备,再次进入这个对话框。在对话 框的右下角点击"升级固件"按钮。

一分包规则 数据包长	度	1300	(字节)
数据包间	隔(越小越如	7) <mark>3</mark>	(毫秒)
升级固件	重启设备	修改设置	取消

图 41 升级按钮

3 如图 43 所示,选择"程序文件下载"单选项。在程序文件中,选择固件文件。串口服务器的 IP 地址部分已经自动填写好,无需再写入,模块类型/型号已经自动选择好。然后点击下载。

执行网页压缩算法: 「 特殊功能: 違计状态转换文件 章	阿页目录下载 本地网页所在根目录: 件1生产webs12003_2004_Webs ¹	.2043_default_web	 ● 程序文件下载 选择程序文件: 资料\固件\所有固件\2003\1.553 (2043临时). BIN
卓岚联网产品的IP地址或域名: 192.168.1.221 下载端口(一般无需修改): 1092 模块类型/型号: 2003 ▼ 网页Flash空间大小选择: 256 ▼ KB 下载时,请先关闭打开的网页。	执行网页压缩算法: 「 特殊功能:	设计状态转换文件]
下载	卓岚联网产品的IP地址或域名: 模块类型/型号: 网页Plash空间大小选择: 下载时,请先关闭打开的网页。	192. 168. 1. 221 2003 256 💌	下載端口(一般无需修改): ¹⁰⁹² ▼ KB
	网页Flash空间大小选择: 下载时,请先关闭打开的网页。	2003	KB

图 42 ZLSN2003 固件升级方法

- 4 此时下载进度条开始走动,下载时间大概 30 秒左右。下载过程中会看到设备的 ACT 灯闪烁,在下载的末尾时刻,看到 LINK 灯闪烁几下。然后程序弹出"传输完毕 LINK 灯闪烁器件不要断电"的提示框。注意:这里只是传输完毕,写入 flash 过程需要 3 秒左右,此时 LINK 灯会闪烁,在这个期间请不要断电。
- 5 下载完毕后一般程序会自动重新启动,一般无需断电。看到运行指示灯闪烁,如果没有自动重新启动,请LINK灯闪烁停止30秒以上,重新上电。
- 6 Web 配置界面更新:固件升级后模块内部的配置网页也需要更新,否则无法 再通过 Web 配置,但是不影响通讯。无需 web 配置的也可以不下载网页。 下载 Web 的方法是:如图 43 所示,将"程序文件"下载模式改为"网页目 录下载"。并且选择本地网页所在根目录为需要下载的网页文件所在目录(该 目录可以从卓岚获得),点击下载,将本地网页目录下的所有文件下载到设 备内部的文件系统上。

<u> </u>	2043_default_web	* 経済文目で教 选择程序文件: 资料、固件、所有固件、2003、1.553 (2043)临时)、BIN
, 执行网页压缩算法: 🔽 特殊功能:	设计状态转换文件	
卓岚联网产品的IP地址或域名: 模块类型/型号:	192. 168. 1. 221 2003	下載端口(一般无需修改): 1092
网页Flash空间大小选择: 下载时,请先关闭打开的网页。	256 💌	KB

图 43 ZLSN2003 web 升级方法

- 7 注意:
 - 7.1 如果提示下载失败,并不会损坏器件,请重新开始下载即可。另外下载 末尾,LINK 灯闪烁时,请勿断电,否则器件将会损坏。
 - 7.2 通过 ZLVircom 查看固件版本号,可以知道新的 firmware 是否已经下载 成功。

图 44 级完毕后查看固件版本

18. 订购信息

表 8 订购信息

型号	说明
ZLAN5407M	普通型号
ZLAN5407MN	带 P2P 功能

19.售后服务和技术支持

- 地址: 上海市闵行区园文路 28 号世宏金源中心 2001
- 电话: 021-64325189
- 传真: 021-64325200
- 网址: <u>http://www.zlmcu.com</u>
- 邮箱: <u>support@zlmcu.com</u>